RJR POLYMERS, INC.
The Total Electronic Package Solution

Introductory Presentation
On
LCP Packaging
Why Liquid Crystal Polymer?

LCP Barrier Properties

- Water Vapor Permeability (g/m²·cm/24 hrs-atm) at 23°C
- Oxygen Permeability (cc·25 μm/m²·24 hrs-atm) at 23°C

Similar to Frit Glass
RJR Package Elements

Offered in two piece or three piece configurations

- Two piece for applications using epoxy die attach
- Three piece for applications using eutectic die attach
RJR Polymers, LCP Packaging Technology:
- The market is ready for a drop in replacement to existing Air Cavity Packaging Technology
- Provide Customers with cost reduction in comparison to legacy ceramic without diminished performance
- Offer high degree of design flexibility
- Lower cost of specialization
- Optimize process on both sides of Manufacturer/Customer relationship.
- Bridge the Power and Frequency spectrums
 - Lo to Hi-Power
 - Low to MM Wave frequencies
- Build a diverse product portfolio
R-Pak LCP Air Cavity Packages

Thermally enhanced metal based for microwave and power applications

- RF/ Wireless
 - Power
 - Signal
 - Microwave
- Imaging
- Sensors
- Fiber Optical
- MEMS
Power Packaging

- Flexible Platforms for product customization
- Full layout of open tools
- Wide array of available thermal bases
<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity - W/mK</th>
<th>Avg CTE</th>
<th>Plating types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>10</td>
<td>8</td>
<td>All</td>
</tr>
<tr>
<td>BeO</td>
<td>285</td>
<td>9</td>
<td>All</td>
</tr>
<tr>
<td>OFHC Cu</td>
<td>394</td>
<td>17</td>
<td>All</td>
</tr>
<tr>
<td>AlSiC MCX-703</td>
<td>185</td>
<td>7</td>
<td>All</td>
</tr>
<tr>
<td>AlSiC MCT-587</td>
<td>235</td>
<td>5.8</td>
<td>All</td>
</tr>
<tr>
<td>AlSiC MCT-487</td>
<td>255</td>
<td>4.8</td>
<td>All</td>
</tr>
<tr>
<td>WCu 90/10</td>
<td>190</td>
<td>7</td>
<td>All</td>
</tr>
<tr>
<td>Moly Cu</td>
<td>160</td>
<td>7</td>
<td>All</td>
</tr>
<tr>
<td>CMC</td>
<td>185</td>
<td>6</td>
<td>All</td>
</tr>
<tr>
<td>CPC 1:4:1</td>
<td>235</td>
<td>9</td>
<td>All</td>
</tr>
<tr>
<td>Rpak370</td>
<td>370</td>
<td>10</td>
<td>All</td>
</tr>
<tr>
<td>RPak350</td>
<td>350</td>
<td>8</td>
<td>All</td>
</tr>
<tr>
<td>Rpak260</td>
<td>260</td>
<td>6.5</td>
<td>All</td>
</tr>
<tr>
<td>Aluminum Diamond</td>
<td>500</td>
<td>7.1</td>
<td>All</td>
</tr>
<tr>
<td>Diamond</td>
<td>1000</td>
<td>1</td>
<td>CVD</td>
</tr>
</tbody>
</table>
Microwave Packaging

- The best performance is achieved in air cavity packages
- RF and microwave devices aren’t fond of being smothered in epoxy
 - detunes, shifts, degrades
- LCP is a very stable, low loss dielectric
 - loss tangent of .003 @ 10 GHz
 - good environmental protection
- Full metal base is an ideal ground plane and heat sink
- Many of RJR’s packages currently function well into millimeter wave frequencies

- Partially matched package
 - Integrated matching structures in the package provide impedance transform without additional cost
Why RPAK™?

- Can handle a wide range of power levels
- Can handle frequencies through millimeter wave frequencies
- Can utilize very high thermal conductivity materials
- Can tolerate CTE mismatch between package base and package sidewall.
- Maintains equivalent levels of mechanical stability as legacy ceramic packaging
- Maintains equivalent levels of moisture resistance as legacy ceramic packaging
- Is lower in cost than ceramic packaging
- Automation in both package manufacturing and assembly will provide for higher levels of future cost reduction
- Allows for higher degrees of materials selection (base materials, plating types, etc.) which can relate to reduced product cost.
- High degree of dimensional repeatability
- **Provides for very high degree of product flexibility and integrated features.**
Next generation packaging

- **Integration**
 - More Functionality in same or smaller space
 - Injection molding offers the opportunity for additional features and added functionality
 - LCP can be electrically conductive

- **Added Features/ Added Value**
 - Integrated Package housing and cable
 - Round packages
 - Impedence Transform
 - Integrated features such as integrated ferrules
 - Integrated package lids
 - Antenna/ radiating element in lid connected to elements of the package. Radio in a package
 - RF Shielding
 - LCP Films/ Board level integration